LIGO: cosa c’è dietro la scoperta
Onde Gravitazionali: 11 febbraio evento congiunto Virgo-LIGO in diretta contemporanea da Cascina e Washington
Festival della Scienza, è partita la nuova era: i fondatori votano ‘no’
PIOMBO ROMANO DA NOBEL
COMUNICATO STAMPA Parte oggi da Cagliari l'ultimo viaggio di 30 lingotti di piombo dell'antica Roma verso i Laboratori Nazionali del Gran Sasso (LNGS) dell'Istituto Nazionale di Fisica Nucleare (INFN). Dopo duemila anni passati in fondo al mare, nella stiva di una nave romana affondata al largo delle coste della Sardegna, la loro nuova casa sarà il ventre di una montagna, sotto i 1400 metri di roccia della catena appenninica. La cerimonia di consegna del piombo romano - frutto di un accordo tra l'INFN, che ha finanziato i lavori di scavo del relitto e il recupero del suo carico, e la Soprintendenza Archeologia della Sardegna, con il parere favorevole del Ministero dei beni e delle attività culturali e del turismo (Mibact) - si svolge oggi presso il Museo Archeologico Nazionale di Cagliari.
All'incontro intervengono il presidente dell'INFN Fernando Ferroni, il consigliere del presidente della Regione Autonoma della Sardegna Gianluca Serra, il soprintendente archeologo della Sardegna Marco Edoardo Minoja, il rettore dell'Università di Sassari Massimo Carpinelli, il direttore dei LNGS Stefano Ragazzi, il direttore della sezione INFN di Cagliari Alberto Masoni ed Ettore Fiorini, ideatore e realizzatore del progetto "Piombo romano" per l'esperimento CUORE (Cryogenic Underground Observatory for Rare Events), presso i LNGS, per lo studio dei neutrini.
"L'utilizzo dei lingotti di piombo romano rappresenta un caso esemplare di collaborazione tra le Istituzioni, finalizzata a valorizzare il patrimonio archeologico nazionale e la ricerca scientifica di frontiera, come quella sulla fisica dei neutrini, premiata nel 2015 con il Nobel", spiega Fernando Ferroni, presidente dell'INFN.
Il progetto di recupero dei lingotti sommersi è il risultato di una cooperazione tra l’INFN, la Soprintendenza Archeologia della Sardegna, e le Università di Cagliari e Milano Bicocca. Successivamente, la collaborazione tra l'INFN e le Università di Cagliari, Sassari e Milano Bicocca ha permesso di condurre accurate misure per stabilire la composizione chimica dei lingotti.
"Grazie alla dotazione di strumenti di altissima tecnologia ai LNGS, è stato possibile effettuare analisi archeometriche con il metodo dei rapporti isotopici, identificando la miniera romana di Sierra de Cartagena, da cui circa duemila anni fa il piombo è stato estratto. Nei prossimi mesi sarà possibile svolgere studi più approfonditi", afferma Stefano Ragazzi, direttore dei LNGS.
"Il piombo romano, che dalla Sardegna parte alla volta dei LNGS, ha caratteristiche uniche ed eccezionali. Il suo recupero, gli studi archeologici associati e l'utilizzo per gli esperimenti dell'INFN non solo saldano due mondi apparentemente distanti, ma costituiscono un esempio di successo, non isolato, della collaborazione fra l'INFN, le Università sarde e le Istituzioni del territorio", sottolinea Alberto Masoni, direttore della sezione INFN di Cagliari.
"L’Università di Sassari è orgogliosa di contribuire a questa impresa e di collaborare con prestigiose istituzioni scientifiche come l’INFN, prime al mondo in questi campi di ricerca. Un altro esempio di come nel nostro ateneo ci siano ricercatori capaci di essere al vertice di ricerche di punta - afferma Massimo Carpinelli, rettore dell'Università di Sassari -. Ringrazio i componenti del gruppo di ricerca che stanno realizzando gli studi sulla composizione chimica dei lingotti. La gran mole di dati raccolti attraverso l'attivazione neutronica e la misura dei rapporti tra gli isotopi stabili del piombo, è al servizio della comunità scientifica, impegnata nel lungo lavoro di analisi e interpretazione archeometrica".
L'accordo tra l'INFN e la Soprintendenza Archeologia della Sardegna prevede la possibilità di utilizzare i 30 lingotti, dal peso complessivo di quasi una tonnellata, preservandone ogni caratteristica di carattere archeologico, per ricerche di archeometria, come suggerito dall'UNESCO.
“Questo piombo - afferma Ettore Fiorini, fisico dell'Università di Milano Bicocca e ideatore dell'esperimento CUORE - è un materiale preziosissimo, con un importante valore scientifico, oltre che archeologico, per la schermatura degli apparati per la ricerca di eventi rari. Si tratta, infatti, di un materiale che dev'essere totalmente privo di contaminazione radioattiva. Il piombo moderno - spiega Fiorini - contiene, infatti, una debole contaminazione radioattiva dovuta al suo isotopo 210, che si dimezza in circa ventidue anni. Da qui l'idea di utilizzare il piombo della nave romana che, essendo stato prodotto duemila anni fa, non contiene più isotopi radioattivi”.
CUORE è un esperimento ideato per studiare le proprietà dei neutrini e, in particolare, un fenomeno estremamente raro, chiamato doppio decadimento beta senza emissione di neutrini. Questo processo non è mai stato osservato finora, e per riuscirci i fisici hanno bisogno di condizioni ambientali di estrema purezza, in particolare di bassissima radioattività. Nasce da qui l'idea - proposta da Ettore Fiorini, portata avanti dall'Università e dalla sezione INFN di Milano Bicocca, e la cui realizzazione è stata seguita in tutti i suoi passaggi dai LNGS - di dotare CUORE di uno speciale “scudo”, realizzato grazie alla fusione della parte inferiore dei lingotti di piombo. Il piombo, essendo un materiale molto denso e con alto numero atomico, è, infatti, ottimo per schermare dalle radiazioni.
La nave romana
L'imbarcazione venne rinvenuta per caso attorno al 1990 da un sommozzatore dilettante al largo della costa di Oristano, davanti all’isola che oggi si chiama Mal di Ventre, nel territorio del comune di Cabras, a un miglio o poco più dalla riva. Si tratta di una navis oneraria magna, un'imbarcazione romana di 36 metri che, oltre duemila anni fa, tra l’80 e il 50 avanti Cristo, trasportava circa duemila lingotti di piombo, solo la metà dei quali recuperata. La nave proveniva dalla miniera di Sierra di Cartagena, nell’attuale Spagna, ed era probabilmente diretta a Roma. Secondo gli archeologi, era specializzata nel trasporto di piombo a scopo militare ed edilizio. Nella sua stiva erano, infatti, alloggiati, su un pavimento in rame, circa duemila lingotti di piombo, assieme ad anfore di vario tipo, ancore, attrezzature di bordo e oggetti di uso quotidiano. Gli archeologi ritengono, data la posizione delle ancore collocate presso la prua, e dei lingotti ancora in parte impilati, che la nave sia affondata senza subire particolari traumi, probabilmente ad opera dello stesso comandante e del suo equipaggio, per evitare che il prezioso carico finisse in mani nemiche.
Il piombo
Ogni lingotto di piombo è lungo 46 centimetri e alto nove, e ha un peso di circa 33 kg. In epoca romana il piombo era un sottoprodotto dell’estrazione dell’argento, e rappresentava un mercato importantissimo per i suoi molteplici impieghi. Veniva, infatti, largamente usato per realizzare oggetti di uso comune, dalle condutture per l'acqua (fistulae), come quelle dell'antica Pompei, ai pesi, alle urne cinerarie, nella produzione delle monete di bronzo, nonché delle "ghiande" dei frombolieri, biglie che venivano lanciate dai soldati con le fionde sui campi di battaglia. Oltre 200 di questi proiettili sono stati trovati sulla nave affondata. Il piombo fuso era, inoltre, utilizzato in edilizia, per tenere insieme i blocchi di pietra. Del prezioso carico romano gli archeologi sono riusciti a ricostruire la provenienza. Ogni lingotto di piombo ha, infatti, incisi i marchi di fabbrica, come "Caius e Marcus Pontilieni, figli di Marcus", "Quintus Appius, figlio di Caius", e "Carulius Hispalius. Si tratta di famiglie di origine italiana che svolgevano attività mineraria in Spagna.
L'esperimento CUORE e i neutrini di Majorana
L'esperimento presso i LNGS è stato realizzato per scorire un fenomeno fisico rarissimo, detto doppio decadimento beta senza emissione di neutrini. Si tratta di un processo in base al quale, all’interno di un nucleo, due neutroni si trasformano in due protoni, emettendo due elettroni e due antineutrini. Nel doppio decadimento beta senza emissione di neutrini non vi è, appunto, emissione di neutrini, poiché uno degli antineutrini si è trasformato in neutrino. Il Modello Standard prevede che i neutrini siano esclusi da questa trasformazione. Ma se, come ipotizzato negli anni ’30 del secolo scorso dal fisico catanese Ettore Majorana, i neutrini e gli antineutrini fossero due manifestazioni della stessa particella, come le due facce di una stessa medaglia, la transizione tra materia e antimateria risulterebbe allora possibile. Questo fenomeno, seppur attualmente raro, potrebbe essere stato frequente nell’universo primordiale immediatamente dopo il Big Bang, e avere determinato la prevalenza della materia sull’antimateria.
CUORE è frutto di una collaborazione internazionale formata da circa 157 scienziati, provenienti da 30 Istituzioni in Italia, USA, Cina, Spagna e Francia. Per l’INFN partecipano le sezioni di Milano Bicocca, Bologna, Genova, Padova, Roma La Sapienza, e i Laboratori Nazionali INFN del Gran Sasso, di Frascati e di Legnaro.
Continue readingBILATERALE ITALIA-USA: ACCORDO SULLA FISICA NUCLEARE
Il 13 gennaio si è svolto a Roma l’incontro bilaterale Italia-Usa per la cooperazione scientifica e tecnologica, un appuntamento importante per rafforzare la collaborazione tra le due comunità scientifiche e per lo sviluppo di programmi futuri. L’incontro, articolato in 7 tavoli tematici, tra cui quello dedicato all’astrofisica coordinato dall’INFN, si è svolto presso il Ministero degli Affari Esteri e della Cooperazione Internazionale. Nell’ambito dell’incontro, l’Istituto Nazionale di Fisica Nucleare e il Dipartimento dell’Energia americano (Doe) hanno siglato un accordo centrato sulla ricerca in fisica nucleare che si inquadra nell’ambito dell’accordo quadro di cooperazione già in essere. “L’accordo – commenta Antonio Masiero, vicepresidente INFN – riguarda numerosi progetti in corso tra cui le attività in collaborazione con il Jefferson Laboratory, il più importante laboratorio americano per la fisica nucleare che vede una notevole presenza di ricercatori INFN".
Continue readingOnde gravitazionali, fra rumors e “big dogs”
Emissione da record per la pulsar del Granchio
UN’EMISSIONE DA RECORD PER LA PULSAR DEL GRANCHIO
COMUNICATO CONGIUNTO INAF-INFN. È l’emissione più energetica mai osservata finora dalla pulsar che si trova al centro della nebulosa del Granchio, nella costellazione del Toro, e situata a circa 6.000 anni luce da noi. A scoprire questo flusso di radiazione pulsata, dalla straordinaria energia di oltre mille miliardi di volte quella associata alla radiazione nella luce visibile, è stato un team internazionale di astrofisici grazie alle osservazioni di MAGIC, due dei più grandi telescopi per raggi gamma al mondo situati sull’isola La Palma alle Canarie, a cui per l’Italia collaborano l’Istituto Nazionale di Fisica Nucleare (INFN) e l’Istituto Nazionale di Astrofisica (INAF).
Sia la pulsar che la nebulosa del Granchio sono di recente formazione in quanto sono i resti di una supernova esplosa nel 1054. Le pulsar, conosciute anche con il nome di stelle di neutroni, concentrano una volta e mezzo la massa del Sole in una sfera di diametro di appena 10 chilometri. La pulsar del Granchio (Crab in inglese) ruota 30 volte al secondo intorno al proprio asse ed è circondata da un campo magnetico estremamente intenso e questo fa sì che emetta un intenso segnale pulsato fino alle frequenze più alte (raggi X e raggi gamma). Tuttavia finora si pensava che alle più alte energie questa emissione pulsata non dovesse più avvenire. Ma le osservazioni di MAGIC durate oltre 300 ore complessive tra ottobre 2007 e aprile 2014 ci hanno restituito una visione completamente nuova della pulsar del Granchio nei raggi gamma.
“Questa scoperta rappresenta un ulteriore risultato importante ottenuto da MAGIC su questo oggetto celeste che, nonostante sia tra i più conosciuti e studiati del cielo, continua a stupirci con nuovi e inaspettati fenomeni”, dice Angelo Antonelli dell’INAF-Osservatorio Astronomico di Roma e ASI Science Data Center, responsabile INAF presso la collaborazione MAGIC. Barbara De Lotto, responsabile nazionale di MAGIC per l’INFN e docente dell’Università di Udine, aggiunge: “Fin dall’inizio nel 2004 MAGIC ha osservato la nebulosa e la pulsar del Granchio, rivelandone nuovi e sconosciuti aspetti. Questo risultato, particolarmente importante perché evidenzia la produzione di energie molto più alte di quanto si pensasse da parte di questa sorgente della nostra galassia, conferma la leadership di MAGIC fra i telescopi gamma”. Già nel 2011 era stata scoperta dagli osservatori MAGIC e VERITAS una inattesa emissione di fotoni molto energetici da questa sorgente. Per indagare meglio questo inatteso fenomeno, un gruppo di scienziati del team MAGIC guidati da Emma de Oña Wilhelmi dell'Istituto di Scienze Spaziali di Barcellona (CEIE-CSIC), ha recentemente condotto accurate osservazioni della pulsar del Granchio, riuscendo a misurare l'energia massima dei fotoni emessi con un ritmo pulsato. “Queste nuove osservazioni hanno mostrato che l’emissione nei raggi gamma della pulsar del Granchio si spinge ad energie ancora più elevate, ben cento volte maggiori delle precedenti misure”, dice Roberta Zanin, ricercatrice all’Università di Barcellona, che ha partecipato allo studio pubblicato in un articolo sulla rivista Astronomy&Astrophysics. “Una scoperta che fa vacillare i processi fisici finora ritenuti responsabili della produzione di radiazione così altamente energetica nelle stelle di neutroni”.
I fotoni provengono da due fasci ben collimati che, secondo le teorie attuali, dovrebbero essere prodotti lontano dalla superficie della stella di neutroni: in prossimità del confine esterno della sua magnetosfera o al di fuori di essa, nel vento ultra-relativistico di particelle che avvolgono la pulsar. Ma sorprendentemente, osservazioni in differenti bande hanno rivelato che i fasci di altissima energia arrivano allo stesso tempo di quelli nei raggi X o nella banda radio che, sempre stando alla nostre attuali conoscenze, dovrebbero essere invece prodotti all'interno della magnetosfera. Dunque l’arrivo sincronizzato delle differenti emissioni della radiazione dalla pulsar può indicarci o che tutta la radiazione viene prodotta all’interno di una regione molto piccola, o che gli elettroni responsabili della produzione di radiazione di più alta energia mantengono in qualche modo memoria della radiazione emessa ad energia più bassa. “Dove e come questa emissione TeV si crei rimane ancora sconosciuto e difficile da conciliare con le teorie standard dei plasmi”, dice Mirzoyan Razmik, del Max Planck Institute of Physics (MPP) a Monaco, rappresentante della collaborazione internazionale MAGIC. “Quei fotoni dovrebbero essere il prodotto dell’annichilazione di coppie di elettroni e positroni (le antiparticelle degli elettroni) attorno del stella di neutroni dovuta all’intenso campo magnetico, dopo che le particelle sono state accelerate a velocità relativistiche. Tuttavia capire come e dove questo effetto si verifica – ovvero in una regione così piccola - sfida ancora le nostre conoscenze”.
La scoperta è stata pubblicata nell’articolo Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC a firma dei ricercatori della collaborazione MAGIC, sulla rivista Astronomy&Astrophysics
L'esperimento
L’esperimento MAGIC si trova all'Osservatorio del Roque de los Muchachos (2200 m slm), sull'isola di La Palma, alle Canarie. Il sistema di due telescopi MAGIC, ciascuno di 17 metri di diametro, è in grado di osservare i raggi gamma di altissima energia (25 GeV-50 TeV) emessi dalle sorgenti cosmiche. MAGIC è stato costruito da una collaborazione in gran parte europea che comprende circa 160 ricercatori provenienti da Germania, Spagna, Italia, Svizzera, Polonia, Finlandia, Bulgaria, Croazia, India e Giappone. L’Italia partecipa a MAGIC attraverso l’INFN (sezioni di Padova, Pisa e Trieste), che è uno degli istituti fondatori insieme alle Università di Padova, Udine e Siena, e l’INAF che è entrata a far parte dell’esperimento nel 2006. Gli istituti INAF che partecipano alle operazioni di MAGIC sono gli Osservatori Astronomici di Brera, Padova e Roma e l’Osservatorio Astrofisico di Torino.